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Abstract  

This paper is devoted to the calculation of the diffuse- 
scattering picture and its temperature evolution in 
cubic perovskites, the loose-packing of which at high 
temperatures is connected with the existence of one- 
dimensional movable objects. The freezing of these 
objects as temperature decreases leads to structural 
phase transitions in consecutive order to tetragonal, 
orthorhombic and rhombohedral phases with accom- 
panying vanishing of relplane families of diffuse scat- 
tering. Depending on the values for the ionic radii 
crystals with one, two or three transitions are possible. 

Introduct ion  

The present paper immediately follows parts I and 
II (Kassan-Ogly & Naish, 1986a, b). A diagram show- 
ing the existence and stability of cubic perovskites 
was constructed based upon ionic radii in paper II. 
In the present paper we take into consideration only 
the perovskites from region (I) of that diagram 
(shifting). 

The cubic lattice constant in these ABX3 perov- 
skites is determined by the contact of A and X ions 
so that A ions are immobile; an X ion possesses only 
one degree of freedom in the direction normal to the 
face in which it is located while B ions have three 
degrees of freedom in the X octahedral interstice. In 
Fig. 8 of part II it can be seen that KNbO3, BaTiO3, 
PbTiO3, AgNbO3, KTaO3, CsGeCI3, AgTaO3 and 
perhaps some others belong to this type. 

By the mono-Laue method and with the help of 
monochromatic radiation (Mo K a )  X-ray patterns of 
single crystals have been obtained by Harada & Honjo 
(1967) for BaTiO3 and by Comes, Lambert & Guinier 
(1970) for K N b O 3  . The presence of three families of 
diffuse streaks in these patterns appears to be a 
peculiar feature of these experiments. Moreover, 
Comes, Lambert & Guinier examined the temperature 
evolution of diffuse scattering and revealed that as 
temperature decreased the subsequent vanishing of 
three families of streaks takes place at the correspond- 
ing phase transitions in K N b O 3 .  Fig. 1 shows 
schematically four temperature series of experimental 
patterns obtained by Comes, Lambert & Guinier for 
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KNbO3. In this paper a physical model was proposed, 
on the basis of which many features of the phenomena 
taking place in KNbO3 and BaTiO3 could be 
explained. Henceforth we shall call this the Comes- 
Lambert-Guinier model (CLG model). 

C o m e s - - L a m b e r t - G u i n i e r  mode l  

In KNbO3 along each of three cubic [001] axes, 
crossing the centres of cell one can find 
• . .Nb...O.-.Nb...O...  chains of ions. At low tem- 
peratures it is convenient to regard the KNbO3 struc- 
ture as an array of equidistant subchains ...O...O... 
and. . .Nb. . .Nb. . . ,  displaced opposite each other and 
frozen in such positions. In such a way the charac- 
teristic features of K N b O 3 :  the subsequent appear- 
ance of tetragonal, orthorhombic and rhombohedral 
phases, the appearance of ferroelectricity and the 
subsequent changing of the spontaneous polarization 
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Fig. 1. The scheme of diffuse scattering in KNbO3, observed by 
Comes, Lambert & Guinier (1970): (a) cubic phase, (b) 
tetragonal, (c) orthorhombic, (d) rhombohedral. 
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direction in structural transitions, could be easily 
explained. For details we refer the reader to the 
excellent original paper by Comes, Lambert & 
Guinier (1970). 

In the present paper we use and develop several 
aspects of the CLG model. First we idealize the rigid 
subchains assuming them to be infinite even at high 
temperatures and oscillating along their own axes 
(parashifting) owing to the gaps between O and Nb 
atoms and freezing with increasing displacements 
(spontaneous shifting) as temperature decreases 
(frozen optical soft phonon). Secondly, we introduce 
the interaction parameters between unidirected chains 
assuming (owing to cubic symmetry) all Jx, Jy and J= 
parameters to be equal. Thirdly, from simple 
geometric considerations concerning the displace- 
ments of all atoms we introduce the coupling between 
the oscillation amplitudes of subchains and the dis- 
placements. Fourthly, the chain oscillations in a sym- 
metrical double-well potential (owing to Coulomb 
instability) are described by the Ising-model approxi- 
mation. 

Formulation of the problem 

The intensity of the elastic X-ray scattering has the 
form: 

l(x)=--~f,J'*..,exp[-ix(R.-R.,)], (I) 

where N is the number of atoms, jr, the X-ray form 
factor, x the scattering vector, and R, the radius 
vector of atom n. 

In our model each K atom is immobile, each O 
atom can occupy two positions symmetrical to the 
cube face, the centre of which is the unstable equili- 
brium position, and each Nb atom can occupy eight 
symmetrical positions in the octahedral interstice. 

As far as the interaction time of a separate X-ray 
quantum with a crystal is small compared to the time 
when the chains change their positions so the scatter- 
ing intensity would be the average value of the 
ensemble of elementary scattering acts over all 
possible crystal configurations. 

In the general case, when each movable atom in 
the crystal may occupy two positions along each of 
the x, y and z directions, the scattering intensity 
adopts the form: 

i (x)  = 1_~--~ fzf* exp [ - i~(R.z-  R,,r) ] 
L N  tin' 

x ~-~ p~ exp [-i~(A'~ltr'~,-A~,,,tr'~,l,)], (2) 

where N is the number of unit cells in the crystal, n 
is the index of a unit cell, L is the number of atoms 
in a unit cell, l is the index of atom l in a unit cell, 
and a is x. y. z; R., = R. +r,;  r, is the radius vector 

of the equilibrium position of ion I in a unit cell; &~t 
is the displacement vector of the ion with number nl 
at the oscillation along the a direction; o'~t is an 
operator acquiring values +1 and -1  at random; p~ 
is the statistical weight of a configuration in which 
each operator has a fixed value; ~(~} is the sum over 
all configurations of the ensemble. 

The unit cell of KNbO3 contains five atoms (see 
Fig. 2). Let us use the following notations: fl =f2 = 
f3 = fo ,  the oxygen form factor; f4 =fNb, the niobium 
form factor; f5 =fK, the potassium form factor. 

In accordance with our model and the results of 
paper II A,z are equal in every unit cell, i.e. they do 
not depend upon the index n and the vector com- 
ponents are: 

Z=A O A ~ = A ~ = A  3 

a~ = A,~= 11,]= --ANb (3) 
x z x x z 

a[= = = = =o. 

In KNbO3 three families of chains along the x, y 
and z directions exist and the subchains oscillate 
concertedly (rigid subchains) and in antiphase 
(optical oscillations) so the tr operator does not 
characterize the positions of separate atoms but of a 
chain as a whole. Moreover the chains oscillate only 

x =tyX along their own directions and one obtains: tr,z yz, 
z trYz = trY=, o'~a = trxy, where the subscripts run over all 

unit cells in the corresponding plane. 
As a result, the behaviour of KNbO3 is modelled 

by the set of three two-dimensional (square) mutually 
perpendicular Ising lattices with the following Hamil- 
tonian: 

x=-½ E 

where 

4 VXo-yzO.y,z,-½ ~, 4VY-Y-Y -- [2 ZXLI Z'X' 

yz;y'z' ZX,Z'X' 

-½ Y. 4 VZ~y(;r~,y,, (4) 
xy;x 'y '  

VOt ot ot ot ot ot 
V O - N b  A O A Nb = V o _ o A o a o + 2  '~ 

-'{- V ~ b _ N b A  ~4bA ~4b (5) 

denotes the interaction between two neighbouring 
chains parallel to the a axis with coordinates nl and 

0 K 

® N8 

e O  
6' 

Fig. 2. Numbering of atoms in the perovskite unit cell. 
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n T  whereas for cubic symmetry considerations it 
follows: 

V x = W V x = V z 
O - O  : V ~ ) - o  o - o ,  N b - N b  = V l ~ b - N b  N b - N b ,  

V x = V Y _ ~  = V z o - ~  O-Nb. (6) 

Hereafter, we shall use the mean-field approxi- 
mation: 

fit"= -16  ~ VXcryX,(trx) - 16 S'. VYtrYzx(trY ) 
y z  z x  

- 16 ~ VZtrxy(tr~), (7) 
xy 

where magnitudes (trY) yield the mean-field equation: 

(tr") = tanh (J" (tr")), a = x , y , z ,  (8) 

where the usual notation; 

16V ~ 
J"  - k T  ' o¢ = x, y, z (9) 

has been introduced. 
The clear physical meaning may be ascribed to the 

magnitudes ANb(tr ~) and Ao(tr"), already called (see 
paper I) the spontaneous shifting of niobium and 
oxygen sublattices. 

As a result the scattering intensity adopts the form: 

I ( x ) = 5 - 1 ~ ~  f t f *  exp , 

x Y' {exp [ - - i x X ( A ~ t r y X  z --  AlXtry ,z  ,) 
{,r} 

Y Y - i xY(A~ ' t r~ -  A,,trz,x,) 

- ix z(A ~ o'~ - A t~,o',~,y,) ] exp [ - f l ~ ] }  

x exp [ -13~ . (10) 

D i f f u s e - s c a t t e r i n g  c a l c u l a t i o n  

Let us make use of the mathematical scheme 
developed in paper I. First, in formula (10) the sum 
should be taken over the values + 1 and -1  of the tr 
operators. To do this it is convenient to use the 
calculation contrivance proposed in paper I, namely, 
under the summation symbol Y,~,, where each index 
n means the combined indexes x, y and z (coordinates 
of the unit cell) one has to express unity as a sum of 
eight terms with the help of Kronecker's 3 symbols: 

1 -= (1 - 3x~,)(1 - fyy,)(1 - 3z~,) + fxx,(1 - fyy,)(1 - 3z~,) 

+ (1 - f=,)3yy,(1 - 3~z,) + (1 - 3x~,)(1 - fyy,)3~, 

+ (1 - fxx,)fyy,fz~,+ fxx , (1- fry , ) f zz ,  

+ fx~'fyy'(1 - fizz') + fxx'fyr'fzz'. (11) 

Under the summation symbol Y,,, in the first term 
one has: 

7, Z tryzX # try,~,,x trYx # trY'x ', trxy # try'r, 

and, therefore, each sum ~ is taken independently. 
For example, 

- 1  

exp [ - i xxA~ t ry z+  jX(trX)tryz] 
x 

t r y z = + l  

= 2 c o s h ( - i x " A ~ + J ' ( t r ~ ) )  (12) 
--1 

~, exp[ixxA,xo'y,~,+jX(o'X)try,~,] 
x +1 O'v,z ,= 

= 2 cosh (ixXAtX,+JX(trx)). (13) 

The product of (12) and (13) is 22 cosh 2 JX(trX){x}, 
where for the sake of brevity the following notation 
has been introduced: 

{x}--- cos (xXAf) cos (xxa;' ,) 

+tanh 2 (JX(trx)) sin (xXA~) sin (xXA~,) 

- i t a n h ( j X ( t r X ) ) s i n [ x X ( A ~ [ - A ~ [ , ) ] .  (14) 

Henceforth, in (14) one may substitute tanh (JX(trx)) 
merely by (tr x) because of (8). 

Beginning with the fifth term in (11) there appear 
expressions in which some or operators coincide. 
Thus, for example, owing to 8yy,f~z, in the fifth term 

x x and, as a result, one obtains: one has tryz = try,z, 

- 1  

E x 
O'vz = + l  

exp [ - i xX(Ai -Ar ) t ryz+  x x x x x x J C °" )tryz] 

= 2 cosh (JX(trx))[x],  (15) 
where 

[ x ] =  cos [xX(A~ - A~,)]- i(tr x) sin [xX(A~ - A rx)]. 

(16) 

All factors of the 2 cosh (JX(trx)) type are cancelled 
by the same factors in the denominator of (10). 

After the cumbersome calculations the scattering 
intensity (10) is expressed as a sum of five terms: 

I ( x ) =  I B r ( X ) + [ I X ( x ) +  IY(x)"~ -/z(x)]-~- I b g ( X ) .  (17) 

Let us examine the first term: 

IBr(X) =~ ~ f i f*  exp [ - - ix .  (r t - -rr)]{x}{y}{z}  
l l '  

1 
XNn,,  , -  E exp [ - i x .  (R, -R~,) ] .  (18) 

Here 1 / N ~ , , , , , e x p [ - i x . ( R , - R n , ) ] = ~ b  8 ( x - b )  is 
the intensity o f  the Bragg reflections in the reciprocal 
lattice with vectors b created by the perovskite simple 
cubic lattice with parameter a; ~ ~ n,fif* exp [ - i x ( r l -  
rr)] is the structural factor of perovskite; and 
{x}{y}{z} is the modulation factor created by the 
oscillations of chains with amplitudes A. The modula- 
tion factor is unity in the formal limiting case A = 0. 
At temperatures above the phase transition when 
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(trx) = (try) = (tr z) = 0 one obtains: 

{x}{yHz}=cos (xxA~ ') cos (xxaT,) cos (xYA~ ') 

X COS (ggYA~ ,) COS ( x z a ~ )  COS (xza~:,),  (19) 

the typical diffuse reducing factor of Bragg reflections 
(see paper I). 

Let us examine the fifth term in (17): 

Ibg(X) = ½]fNblE{sin 2 (x~A~¢o)sin 2 (xYAYb) 

x ( 1 -(trx)2) (1 -(crY) 2) 

+s in  2 (xY.A~) sin 2 (xZA~b) 

X (1 --(o-Y)2) (1 --(trz)2) 

+ sin 2 (x zA ~ )  sin 2 (x xA ~b) 

X (1 _ (trz)2)(1 -- (trx)2)}. (20) 

This expression does not contain 8 functions and 
represents the diffuse background continuously dis- 
tributed over the whole relspace. It is important that 
it is created only by Nb ions since only Nb ions 
possess three degrees of freedom. On cooling the 
background remains because even at the freezing of 
one of the chain families two degrees of freedom of 
the Nb ions are left in perpendicular directions. The 
diffuse background intensity does not depend upon 
temperature at high temperatures whereas it entirely 
vanishes in the formal limiting case ANb----0. Owing 
to the factor of (1-(trX) E) type it naturally vanishes 
at T = 0  ((trx)= 1). 

Three terms of the same kind in (17), IX(x), IY(x) 
and I~(x), are of most interest to use. Let us examine 
one of them: 

IX(x) = ~ ~ f~r exp [ -  i x ( r , -  rr)] 
11' 

x([x]-{x}){y} 

1 x {z}-~ ~ exp (211 

Here the expression 

- - ~ ,  exp[-ixX(Rx-Rx')]=~-'~ 8(xX-b x) 
b x 

describes the family of equidistant relplanes normal 
to the x axis, i.e. the family of shining diffuse x planes. 
The remaining factors in (21) determine the intensity 
inhomogeneity along these relplanes. Making use of 
(14) and (16) and the concrete values of rl (see Fig. 
2): 

a a a 
r , = ~ ( l O 0 ) ,  ra=~(OlO),  r3=~(O01),  

a 
r4=0,  r s = ~ ( l l l ) ,  (22) 

one can reduce (21) to the following form: 

IX(u) = ~{Ifol E sin 2 xXA~,+ I f ~ l  E sin E x xA ~qb 

X [COS E x.YAY b + (try)E sin 2 xyAYb] 

X[COS E xZA~b + (trz)E sin E ~zA~b] 

--sin x x Ao sin xXA~b 

x [fof*Nb exp [--i(xXa/2)] 
x (cos ~YA~,rb-- i(tr y) sin xYA~b) 

X (COS xZA~b - i(tr z) sin ~ZA~) + C.C.]} 

x (I - ( t rx)  2) ~ 8(xX-bX). (23) 
b x 

It is easily seen from (23) that shining diffuse relplanes 
are created only by Nb and O atoms. The whole 
diffuse scattering vanishes in the limiting case A = 0. 
At temperatures above the phase transition, i.e. when 
(trY)=0, the diffuse-scattering intensity is tem- 
perature independent. 

The behaviour of lY(x) and IZ(u) in (17) in the 
shape of the y and z relplanes is quite similar to the 
behaviour of Ix(x). The families of diffuse relplanes 
of three orientations reveal themselves in the mono- 
Laue experiment as corresponding families of streaks 
on the X-ray pattern (see Fig. I). 

Up to now we have tacitly assumed that tern= 
perature dependence is contained only in the jx, jy 
and jz parameters, the values of which are assumed 
to be equal. Because, according to the mean-field 
equations (8), the crystal should undergo a simul- 
taneous phase transition of second order in all three 
directions and because of the eight equivalent posi- 
tions for the Nb atom the crystal would be broken 
into eight types of domains. The crystal structure 
would be rhombohedral  with a simple cubic 
framework composed of immobile potassium atoms. 

In reality the whole picture of the phenomenon is 
quite different and the real change of the positions 
of all the ions in the crystal, not just those which 
participate in shifting, is the physical cause of the 
phenomenon. 

The coupling of spontaneous shifting and structural 
distortions 

Let us assume that in one of the crystal domains as 
temperature decreases from the parashifting regiori 
the phase transition occurs along only one direction, 
namely along the z axis. This means that the Nb ions 
have been displaced on-average by the value ANb(tr  z) 
along the z axis while oxygen ions 3 and 3' (see Fig. 
2) have been displaced by Ao(tr z) opposite to the Nb 
ion. 

As a consequence all four K ions in the upper face 
(Fig. 2) are drawn nearer because oxygen ion 3 no 
longer restrains them. Four lower K ions are drawn 
nearer in the same way. At the same time the four 



318 I M M A N E N T  CHAOTIZATION OF CRYSTAL STRUCTURES. III 

oxygen ions 1, 1', 2 and 2' in the side faces are also 
drawn nearer since they are obliged to be on the 
average at the centres of faces participating in the x 
and y parashiftings. All these displacements are pos- 
sible if potassium ions 5 and 5', 6 and 6', 7 and 7', 8 
and 8' displace along the z axis. From simple 
geometrical considerations it is clear that the specific 
stretch is less than the specific contraction along the 
x and y axes. 

As a result of all these displacements a unit cell 
and the whole domain is slightly tetragonalized so 
that the lattice parameters change as follows: 

a~ = a(1 + l'(trz)) 

a~ = ay= a ( 1 -  t'(trz)), (24) 

where I' and t' are small magnitudes and the new 
(tetragonal) lattice parameters are denoted az, ax and 
ay. Despite all the displacements described above the 
main condition for perovskite to belong to region I 
(shifting), namely, the contact between ions A and 
X, is retained. Fig. 3 shows the change of cell shape 
at the tetragonalization. This figure shows a cell face 
normal to the x axis. It is clear that 

2 q ~ =  Ra + Rx, + =(  RA + R x )  2. 

Using (24) one obtains: 
2 2 

az + ax = 2a 2, 
a2( 1 + l'(o'Z)) 2 + a2( 1 - t'(o'Z)) 2 = 2a 2. 

Taking into account the fact that in the tetragonal 
phase (o "z) differs little from unity over almost the 
whole temperature region one obtains a simple 
approximate relation between l' and t': 

/ ' = 4 2 -  ( 1 -  t ' )2-1.  (25) 

Owing to cubic symmetry it is clear that relations 
similar to (24) should also exist along the x and y 
directions. As a result one has: 

ax = a(1 + l'(o "x))( 1 - t'( o -y))( 1 - t'(tr z)) 

a y = a ( 1 - t ' ( t r x ) ) ( l + l ' ( t r Y ) ) ( 1 - t ' ( t r z ) )  (26) 

az = a( 1 - t'(trx))(1 - t'(trY))(1 + l'(trz)). 

The estimation of possible values for the gaps between 
ions of cubic perovskite, the values of possible dis- 
placements at tetragonalization, shows that l' and 
t ' ~  1 0  - 3  a s  in real phase transitions from the cubic 
to the tetragonal phase in KNbO3, BaTiO3 and so 
on. Simultaneously with displacements of ions the 
gaps between them also change and consequently the 
amplitudes of the sublattice oscillations also have to 
change: 

d ~,Ib =/tNb( 1 + INb(trx)) ( 1 -- tNb(0rY)) (1 -- tNb(0rZ)) 

/t~b = ANb(1 -- tNb(O'"))(1 + /sb(O'Y))(1 -- tNb(O'Z)) (27) 

/tNb =/tNb(1 -- tNb(trx))(1 -- tNb(CrY))(1 + lyb(O'Z)), 

where /tr,n, denotes the oscillation amplitude of the 
Nb subchain in the cubic phase where all (o "~) = 0. 
The amplitudes are the same along the x, y and z 
directions and therefore no longer have the super- 
script. In general at the appearance of distortions the 
amplitudes in different directions will be different so 
that they are denoted by the same symbol /tNb but 
with the superscript. 

Quite similar to (27), relations should be written 
for oxygen amplitudes A~ in terms of Ao. 

It should be emphasized that all the parameters 
/tNb, /tO, l', t', lNb, tNb, Io, to are entirely determined 
by the ionic radii RK, RNb, Ro and by the ratio of 
the ionic masses M ~  and Mo (K ions are irrelevant 
for they are immobile in the whole of region I). 

The problem of the calculation of these eight par- 
ameters turns out to be a complicated independent 
problem. We shall call it merely the A problem and 
discuss it at length later on. Now attention should be 
paid to the following simple relation: 

/tNB / t ~  Mo 
A---- o -  /t---~oo--MN-----bb--m; lNb=lo- - l ;  

(28) 
tNb = to = t. 

The first relation merely expresses the mechanics law 
for optical oscillations; the latter two relations could 
be easily obtained from (27) and similar formulas for 
oxygen subchains substituting (or x) = (o -y) = 0, (o "z) = 
1 and then (o -y) = (o -z) = 0, (or x) = 1. It is convenient 
to rewrite the mean-field equations (8) substituting 
in them J'~ from (9) and 4V ~ from (5): 

F4(o.o) 
(cr~)=tanhk k T  ( V ° - ° / t ~ / t ~ 3 + 2 V ° - N b A ~ A ~ b  

-i 

V~_~/t ~/t ~b) [. + 

Using the coupling equations (27) and relations (28) 
one obtains: 

(crx) = tanh  [-4T ( Vo_oa~ + 2 Vo_NbaoaNb 

..~ 2 x 
VNb-NbA Nb)(  0r ) 

-I 
x (1 +/(trx))2(1 - t(ory))2(1 - t(o'Z))2[. 

/ 

Fig. 3. Perovskite cell distortions (stretch and transverse contrac- 
tion) at the transition to the tetragonal phase. 
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Let us introduce the notation: 

4 
ro=~[Vo_oA~+2Vo_NbAoANb+ VNb_NbA~b]. (29) 

Finally the mean-field equations will be written as 
the system of three transcendental equations: 

(00x) = tanh [ -~  (00 x ) 

x (1 + l(00~))2(1- t(00Y))2(1- t(00z)) 2 ] 

I 

(00Y) = tanh [--~ (00 y ) 

x (1 - t(00'~))2(1 + l(00Y))2(1 - t(00z)) 2 ] 

(00z) = tanh [ -~  (00z) 

x ( 1 - t ( 0 0 x ) ) 2 ( 1 - t ( 0 0 Y ) ) 2 ( 1  +I(00z))2]. (30) 

ThUS we have obtained the system for calculating 
the magnitudes (00"), (crY), (00z) at any temperature T. 
Any real perovskite from region (I) possesses fixed 
values of l and t entirely determined by the ionic 
radii and masses. The temperature of all phase transi- 
tions and the temperature dependence of (o "~) should 
be found from solutions of system (30). After that 
the temperature behaviour of the diffuse intensity 
could be obtained by formulas (23) as well. 

The solution of mean-field equations 

At any values of l, t and To the equations (30) yield 
the zero solution (o'~)=0. The non-zero solutions 
may appear in a chosen perovskite only when the 
temperature reaches that of the corresponding phase 
transition. If one does not take into account the 
reconstruction of a lattice, namely, if one puts l = t = 
0, then all the equations become equal: 

reconstruction of a lattice: ions displace, the shape 
of the unit cell changes, the gaps between ions par- 
tially or completely vanish, the loose packing of the 
structure decreases, i.e. the causes of diffuse scattering 
under consideration vanish partially or completely. 
Finally, the conditions for spontaneous shiftings in 
the other directions change; in particular, the tem- 
peratures of the phase transitions change. 

It will be shown later on that the temperature TI 
of the first phase transition with spontaneous shifting 
in one direction (for example, along the z direction) 
differs from To, namely, TI> To. In contrast, the 
temperatures of the next phase transitions (if any) 
with spontaneous shifting along other directions TII 
and Tm are lower than To. 

In general the system (30) has seven possible types 
of solutions: 

Solution type 001 002 003 Symmetry 
0 0 0 0 cubic (trivial) 
I 0 0 00i tetragonal 
II 0 O'IX 00n orthorhombic 
III 00III O'III 0 0 I I I  rhombohedral 
IV 0 00IV 001V) 
V o'v o.v o'~, } low-symmetric 
VI O'v~ 00~'I 00~qJ 

Here the notations o"1,002,003 are introduced, each 
taking the values (crX), (o "y) or (00z) depending on the 
concrete domain. 

One should find out the regions of existence of 
these solutions; then at fixed l and t values the sol- 
ution with lowest energy should be chosen. The 
energy formula is obtained by averaging the mean- 
field Hamiltonian (7) with the help of (5), (9) and 
(12): 

E = -16[  Vo_o A2 + 2 VO_NbAoANb + VNb_Nb A2b] 

x(A200~+ 2 2 2 2 A2002 + A3003), (31) 

where 

A, = (1 + 10-1) ( 1 - to'2) ( 1 - tO'a) 

A2 = (1 -- to',)(1 + lo'2) (1 -- to'3) 

A3 = (1 - t001) (1 - t002)(1 +/o'3). 

Hereafter comparing the energies we shall omit the 
irrelevant constant 16[...]. 

Hence the physical meaning of 'initial' temperature 
To becomes clear. When the temperature decreases 
to this value the crystal undergoes a phase transition 
of second order and the spontaneous shifting begins 
at this temperature without any lattice distortions 
whereas (00") = (cr y) = (00z), i.e. the freezing of all three 
families of chains takes place simultaneously so that 
the new phase appears to be rhombohedral. 

However, in reality the spontaneous shifting in one 
direction immediately involves the corresponding 

Survey of the solutions 

The trivial solution: 001 = 002 = 0°3 -- 0 exists over the 
whole temperature region; its energy Eo = 0. 

The tetragonal solution: 003 = 00i, trl = 002 = 0. In this 
case the system (30) is reduced to one equation: 
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The tetragonal solution energy is equal to: 

E1 = -0"~(1 + 10"02. (33) 

The orthorhombic solution: o'l = 0, 0.2 = 0"3 = 0"11. 
The system (30) is reduced to one equation: 

0"Xl = tanh [ -~  o'ii(1 + lo'H)2(1 - t0.1i)2]. (34) 

The orthorhombic solution energy: 

EII = -20"~t( 1 + lcru)2(1 - t0"i02. (35) 

The rhombohedral solution: o't = 0"2 = 0"3 = 0"11t. The 
system (30) is reduced to one equation: 

trill = tanh [ -~  0.iii(1 + I0"1n)2(1- t0.111)4]. (36) 

The rhombohedral solution energy: 

EII  I = -30 .2 i i (1  + / ~ i l l ) 2 ( 1  - t0.iii) 4. (37) 

The simple in principal but rather cumbersome 
analysis of the equations describing various solutions 
of the system (30) results in the following conclusions. 
The tetragonal solution exists from TI to T = 0 so that 
TI> To. Both orthorhombic and rhombohedral sol- 
utions exist from To to T = 0. The remaining (low- 
symmetric) solutions exist in the finite intervals within 
the interval (To, 0). However, the energies of the 
low-symmetric solutions lie above only one of the 
symmetric solutions. Therefore, we shall not regard 
these hereafter. The temperature dependence of 0.i, 
0.TI and 0.m is sketched in Fig. 4. The mutual disposi- 

To Tr T 

Fig. 4. Temperature dependence of  the mean-tield equation sol- 
utions: tr w , t r , ,  Or m . 

tion of the curves in this figure does not depend on 
the numerical values of l and t. 

From the boundaries of the solution existence and 
from equation (32) one can draw the conclusion that 
on cooling the crystal initially undergoes a first-order 
phase transition from cubic to tetragonal. The further 
temperature behaviour depends upon the numerical 
values of parameters l and t (more precisely upon t 
only) determined from the ratios of the ionic radii 
and masses. 

The numerical calculations 

The numerical calculations of equations (32)-(37) 
give four topologically different possibilities for the 
crossing of different solution energies depending 
upon the value of the parameter t (see Fig. 5). The 
solid curve in each figure shows the states of the 
crystal at different temperatures. Cross-overs on solid 
curves correspond to the phase-transition points /'1, 
TI~ and Tin. It should be noted that despite the 
topological difference of Figs. 5(b) and 5(c) they both 
describe one and the same crystal behaviour. Fig. 6 
shows the dependence of the phase-transition tem- 
peratures upon the t parameter where tl = 1 - ~  
0.184; t2 = 1 - v ~ / 2  =0.293. The solid curve in Fig. 7 
depicts the temperature dependence of the spon- 
taneous shiftings 0.1, 0.2 and 0.3 at various values of 
t. Thus depending on the t values the perovskite 
belonging to the 'shifting' region (see diagram in 
paper II) as temperature decreases are able to 
undergo one, two or three structural phase transitions 
in a strict sequence - cubic, tetragonal, orthorhombic 
and rhombohedral. Fig. 8 shows the results of the 
numerical calculation of lattice parameters by for- 
mulas (26) for crystals with three transitions,/.e, for 
t <f l .  

Temperature evolution of diffuse scattering 

Let us return to formula (23) for diffuse scattering 
intensity. Taking into account the relations (27) and 
(28) and also the unimportant (from a qualitative 
point of view) simplification Ao=ANb=---A one 

['° I'" 
(a) t < t  1 (b) t t < t < t  2 (c) t ~ < t < t  2 (d) t2<t  

Fig. 5. Temperature dependence of the energies for tetragonal, orthorhombic and rhombohedral solutions. The solid curve indicates 
the real states of  perovskite over the whole temperature region. 
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obtains: 

IX(x) = (1 _ (0.x)E) sin E [xA(1  +/(0.x))(1 - t(o'Y)) 

x(1-t( trz))]Mx(x)  Z '~(xX-bX), (38) 
b x 

where the factor Mx(x) describes the inhomogeneous 
distribution of intensity along relplanes. Now we shall 
consider just the common temperature dependence 
of the intensities of relplanes, that is determined in 
the main by the first two factors in (38). Let us denote 
these two factors by Ix(u x) and similarly Iy(~Y) and 
Iz(~Z). 

Ix(x x) = (1-(0"") 2) sin E [xXA( 1 + l(0.x)) 

x (1 - t(o'Y))(1 - t (o 'Z))]  

Iy ( ~Y ) = ( 1 -- (0.Y)2) s in  2 [ u y A  ( 1 - t(  o "x)) 

× (1 + l ( 0 . Y ) ) ( 1 -  t (0 . z ) ) ]  

/ ~ ( x  z) = ( 1 - (o'Z) E) s i n  2 [ x Z A (  1 - t(o'X))  

(39) 

x (1 - t(o'Y))(14-/(o'Z))]. 

Let us consider a typical crystal with three phase 
temperatures and take, for instance, t=0.125 and 
l = 0.1. We shall compare the intensities of equivalent 
relplanes from three families; for example, the second 
ones x x = u y = x z = (27r/a)2. The value of A has been 
taken equal to 0-025 a. To facilitate comparison with 

0 t~ t~ 

Fig. 6. The dependence of phase-transition temperatures upon the 
t parameter, t t =0.184; t2=0.293. 

the experiment by Comes, Lambert & Guinier (1970) 
we shall assume that the first phase transition occurs 
along the z axis, then along the x axis, and finally 
along the y axis. Fig. 9 shows the calculated tem- 
perature dependence of the diffuse relplane intensities 
and for the sake of discussion the temperature depen- 
dence of the two factors is shown as well. The non- 
monotonous behaviour of the factor of sin 2 gxA x type 
should be emphasized since it may give, at some value 
of the parameters, even an increase of the diffuse 
scattering intensity with temperature decrease. 

Comparison with experiment 

The temperature dependence of diffuse relplane 
intensities shown in Fig. 9 describes the experimental 
situation that takes place in KNbO3 and is shown in 
Fig. 1 of Comes, Lambert & Guinier (1970), whereas 
Iy(x y) in Fig. 9 agrees well with Fig. 7 of their paper. 

The calculated behaviour of the lattice parameters 
shown in Fig. 8 is in good agreement with the experi- 
mental data for KNbO3 of Kay & Vousden (1949). 
Similar pictures can be obtained for crystals with one 
or two transitions. Figs. 7(a) and 7(c) reproduce with 
good agreement (with o- redesignated by P) the 
behaviour of spontaneous polarization in the fer- 
roelectrics KN.bO3, BaTiO3 and PbTiO3 obtained by 
Triebwasser (1956), Merz (1949, 1953) and Remeika 
& Glass (1970) accordingly, including the direction 
and reorientation of spontaneous polarization P at 
phase transitions. The numbers and types of domains 
observed in the experiment also agree with our theory. 

Let us now compare KNbO3 and BaTiO3, which 
according to numerous experimental data behave like 
twins. They both undergo the same cascade of three 
structural phase transitions with identical crystal 
structures and so on. However, the diffuse X-ray 
pattern obtained for BaTiO3 in the cubic phase by 
Harada & Honjo (1967) differs markedly from the 
corresponding picture for KNbO3 obtained by 
Comes, Lambert & Guinier (1970). It is so much 
weaker that one family of diffuse streaks (circular 
ones) was not even observed despite the fact that the 

Tn~ r~ 1"o TI ~I, 

(a) (b) (c) 

Fig. 7. Temperature dependence of spontaneous shifting in three directions for a crystal with three transitions (KNbO3 type). 
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exposure time was 120 h for BaTiO3 against 2 h for 
K N b O 3 .  The first reason which comes to mind is the 
difference between the niobium and titanium form- 
factor values since they both exceed that of oxygen 
and thus niobium and titanium subchains provide the 
main contribution to the diffuse scattering intensity 
according to formula (23). But this difference (f~b 
132;f2~=38) is not enough to explain the much 
greater experimental difference between KNbO3 and 
BaTiO3. Luckily we have the other valuable factors 
in (23), namely, the factors of sin 2 x~A~b type. Here 
ANb (or ATi) is determined, firstly, by a gap between 
the Nb ion (Ti ion) and the oxygen ion and, secondly, 
its share of a gap is determined by relation (28): 

A N b  M o  (ATi Mo) 

ao-  
The niobium-oxygen gap is greater than the titanium- 
oxygen gap which is seen in the diagram in paper II 
since KNbO3 is farther than BaTiO3 from the close- 
packed point A. The relative share of the niobium 
amplitude is also greater than that for titanium 
according to (28). These are two additional reasons 
for the weakness of the diffuse scattering in BaTiO3 
compared with KNbO3. 

Discussion. Other experimental examples 

Thus the mathematical description developed for the 
loose packing of a crystal structure and the resulting 
diffuse scattering together with the further develop- 
ment of the Comes-Lambert-Guinier model gives for 
the first time not only a qualitative but also a detailed 
quantitative description of the whole phenomenon 
taking place in shifting perovskites, namely, X-ray 
pattern tracery, its temperature evolution, the cascade 
of structural phase transitions, orders of transitions, 
temperature behaviour of lattice constants, spon- 
taneous polarization and so on. 

It should be reiterated that the method of X-ray 
diffraction of a monochromatic beam on a fixed single 
crystal (mono-Laue method) appears to be a powerful 

I - " X  

i ____i a~ayaz --....I- 
l l  ¢ t  

, 
I 

, 

K#eO  

, , , . ~  
0 -c~ T,, -r~ 

Fig. 8. Calculated temperature dependence of the lattice par- 
ameters for a crystal with three transitions (KNbO3 type). 

instrument for structural studies of a crystal with a 
loose-packed lattice. Unfortunately very few experi- 
ments have been carded out with this method up to 
now. 

The lattice loose packing in ionic crystals is caused 
by the ratios of the ionic radii and owing to gaps 
between them can lead to the existence of movable 
one-dimensional (parashifting) or two-dimensional 
(paratilting) objects. If the oscillations of these 
objects take place in a multi-well potential (here 
double-well potential in the Ising approximation) 
they can freeze as temperature decreases creating, 
owing to coupling equations (27), structural phase 
transitions to new phases. In the present paper the 
investigation of perovskites with movable chains has 
led to the discovery of the existence of perovskites 
with either one, two or three transitions in the shifting 
region (I). For example, all the crystals falling in the 
region with t < tl (Fig. 6) possess three phase transi- 
tions, like KNbO3 or BaTiO3 in which three transi- 
tions were observed experimentally. The crystal 
CsGeC13 falls into the same region but in the experi- 
ment by Christensen & Rasmussen (1965) only one 
transition from the cubic structure directly into the 
rhombohedral one is observed. A possible explana- 
tion is that at very small t value CsGeC13 should 
possess three transitions with very close phase-transi- 
tion temperatures T~, Tu and Tin, which had not 
been successfully split in experiment. The PbTiO3 

sin2~ez~ z st,2ae~a x s~n~e~Y 

If 
t_<6,72 

I Ij 
Zz~') 

r,~ r~ i-, 

r~t~,l u~9 

1 
i I 

Fig. 9. Calculated temperature dependence of the diffuse-scat- 
tering intensity for three families of relplanes (z, x and y) - 
lower curves. The upper curves describe the two separate factors 
(1 -(o-) 2) and sin 2 x"A '~. 
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crystal with one phase transition from a cubic to a 
tetragonal phase observed in experiment apparently 
corresponds to the t > t 2 region in Fig. 6. In the region 
tl < t < t 2 one can find two perovskites, AgNbO3 and 
AgTaO3, with two phase transitions, observed by 
Francombe & Lewis (1958), from a cubic into a 
tetragonal and then into an orthorhombic structure. 
These two crystals are apparently antiferroelectrics, 
the oscillating chains in them do not freeze in the 
same order as in KNbO3, but in chess-board order 
(antishifting) which corresponds to a negative sign 
for the chain-interaction parameter. Discussion of 
this question may be found in Alexandrov, Anis- 
tratov, Besnosikov & Fedoseeva (1981) or in Lines & 
Glass (1977). The behaviour of such crystals could 
be described in our theory with slight change; namely, 
to describe antishifting one should introduce two 
sublattices in each direction, as is usually done in the 
theory of antiferromagnetism. 

Certain attention should be paid to KTaO3 in which 
no transitions had been observed. According to the 
values of the ionic radii it has to undergo three phase 
transitions; however, the transition temperatures are 
determined not only by the t values but also by the 
chain-interaction parameter J which is only very 
small and the transition temperatures are also very 
small. The experimental study of the mixed com- 
pounds KNbO3-KTaO3 obtained by Triebwasser 
(1959) and discussed by Jona & Shirane (1962) gives 
support to such suppositions. According to our con- 
siderations in KTaO3 as temperature decreases to the 
first transition (i. e. over the whole temperature region 
investigated) in the X-ray pattern all three families 
of diffuse streaks should be kept (Fig. 1 a). The direct 
experimental observation of this in the mono-Laue 
method would be desirable. 

It should be noted that some crystals beyond region 
(I) on the diagram of perovskite distribution (Fig. 8, 
part II) but close to the boundary of region (I) may 
nevertheless be of the shifting type since the radius 
values may appear to be incorrect and since this very 
consideration in the assumption of rigid spheres is 
only an approximation. In particular, this concerns 
AgNbO3 and AgTaO3 mentioned above. Kania, 
Roleder & Lukaszewski (1984) and Lukaszewski, 
Pawelczyk, Handerek & Kania (1983) give some 
contradictory evidence for a 'tilting' behaviour of 
these compounds, rather than a 'shifting' behaviour. 

Finally, special attention should be paid to some 
general conclusions which may be drawn from the 
theory developed. Here it is relevant to refer to a very 
remarkable discussion in Lines & Glass (1977) on the 
question of the genuine crystal structure of BaTiO3 
type. We can state now that genuine cubic perovskites 
in the traditional sense do not exist at all. Not a single 
real perovskite is close-packed in which there are no 
gaps between ions or not a single perovskite corre- 
sponds to point A of Fig. 8 in part II. Hence there 

are reasons for the existence of movable rigid chains 
in such crystals (we discuss here only perovskites 
from the shifting region). Below the first (or sole) 
phase transition when the chains freeze the crystal 
structure has the lower symmetry: tetragonal, ortho- 
rhombic, rhombohedral. Above this temperature the 
oscillations of chains take place so that any B atom, 
for example, does not occupy the centre of the unit 
cell but with equal probability may be found in eight 
symmetrical displacements. More precisely if the 
crystal structure is regarded as that determined by 
Bragg scattering only so a perovskite at T >  T~ has 
cubic symmetry which coincides with that usually 
described in the literature. But if one determines the 
crystal structure in a more detailed manner, i.e. if the 
observed diffuse scattering in addition is used for the 
structural analysis so far, a rich picture of the structure 
will be obtained and no single perovskite is a cubic 
one. 

Remarks on the A problem 

To obtain Figs. 4 to 9 the mean-field equations with 
parameters t, I, LI taken from an intuitive estimation 
have been calculated. The values of these parameters 
in rigorous calculations should be obtained with the 
help of the values for the ionic radii and ionic masses. 
This is the A problem mentioned above. We shall 
give only a brief discusssion of it. 

Let the first phase transition (from cubic to 
tetragonal) occur owing to the appearance of spon- 
taneous z shifting. Let us consider the geometrical 
circumstances before the transition and following the 
transition and the accompanying reconstruction of 
the crystal lattice. 

The gap between the B and X ions in the earlier 
(cubic) state is denoted by A. Intuitively it is clear 
that at spontaneous shifting this gap has to lessen 
and may vanish completely with the opposite dis- 
placements of the B and X ions. But, in reality, 
depending upon the ionic radii and masses, two situ- 
ations are possible. Either a moving X ion comes in 
contact with a B ion or it meets side X ions first. Let 
us denote symbolically these two possibilities by: 
cubic-XX(z) and cubic-XB(z). 

After the spontaneous shifting along the z axis the 
inevitable lattice contraction in the xy plane takes 
place owing to the onset of the contraction of the 
framework of A ions. At this point, X ions in side 
faces also contract. After such a reconstruction the 
regime of X-ion motion along the z axis may change. 
It is easy to understand that the situation cubic- 
XX(z) may only be strengthened and we shall denote 
this as tetra-XX(z). As for the cubic-XB(z) contact, 
this may either be kept [tetra-XB(z)] or become 
tetra-XX(z). Moreover, one should analyse also the 
motion of the X ions in the transverse direction (along 
the x axis). 
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As a result of such an analysis we obtain four 
possible regimes of z shifting depending upon the 
ratios of the ionic radii Rx and Rs and their masses 
Mx and Ms: 

Before reconstruction 
in any x, y or z After reconstruction 

direction along z-axis along x or y axis 
(1) cubic-XX tetra-XX tetra-XX 
(2) cubic-XB tetra-XX tetra-XX 
(3) cubic-XB tetra-XB tetra-XX 
(4) cubic-XB tetra-XB tetra-XB 

After cumbersome calculations one can find the 
boundaries of all these regimes in two-dimensional 
space of the variables (r A, rs). These boundaries 
depend also upon the mass ratio m = M x / M s  as a 
parameter. Correspondingly one can calculate the t, 
l and A parameters for the mean-field equations in 
every case. 

Omitting the details of the complicated calculations 
we shall give only a sketch of the subdivision of the 
shifting region (I) in the diagram (rA, rs) into subre- 
gions corresponding to these regimes (see Fig. 10). 
It appears that the numbers of phase transitions in 
these regimes are different: (1), (2) or (3) transitions 
of first order and in one case [subregion (1')] only 
one phase transition of second order. In the latter 
case the spontaneous shifting causes the decreasing 
of the amplitudes along the z axis but not the increas- 
ing as in the remaining cases. 

Considerations of such a kind allow one to under- 
stand why in perovskites from the shifting region 
there may be different numbers of phase transitions. 
Putting 'the coordinates' (ra, rs) of a crystal into the 
diagram one can predict its behaviour within the 
framework of the notions 'ionic radii and masses' of 
course. 

Remarks  on the order parameter  

We denote the oscillation amplitude of the oxygen 
ion in the cubic phase by Ao (ANb for niobium) and 
the spontaneous displacement (shifting) of the oxy- 
gen subchain by (o'~)Ao ((o'Z)Ar, n, for niobium). In 
the cubic phase the spontaneous shifting is zero since 
(or z) = 0. Below the transition to the tetragonal phase 
(o "z) appears to be non-zero but the Ao (and Am) 
value also changes so that both magnitudes (o -z) and 
Ao are temperature dependent. The spontaneous 
shifting of oxygen subchains in the tetragonal phase 
is (o'Z)Ao((o'Z)). Our task now is to describe the depen- 
dence Ao((O-~)). One limiting value at (cr~)~0 is 
known already; it is Ao and can be easily calculated 
from the geometry of a cell with fixed values of the 
ionic radii and their masses. In just the same way the 
amplitude value in the completely formed tetragonal 
phase, i.e. at (cr~)o 1, can be calculated. Based on 
these boundary values we shall approximate Ao((O'Z)) 

by linear dependence: Ao((o~z)) = Ao(1 + l(crZ)) and 
similarly ANb((~rz)) = Am(1 + l(crz)). After such con- 
siderations the spontaneous displacements of O sub- 
chains and Nb subchains are to be expressed through 
(or z) only. 

Thus although the crystal structure is determined 
by spontaneous shifting of oxygen and niobium sub- 
chains it is determined in reality only by one order 
parameter, (o'Z). This is one of the most important 
advantages of our theory. 

At the same time the coupling of the order par- 
ameter C o-z) with the crystal structure slightly differs 
from traditional concepts. In fact, although at high 
temperatures the (or z) value equals zero nevertheless 
the real perovskite structure is no longer the ideal 
cubic one. The observation of three families of diffuse- 
scattering streaks at high temperatures gives rather 
convincing support to this statement. Quite similarly 
in the tetragonal phase even at (crz)~ 1 the crystal 
structure is no longer tetragonal but the residual loose 
packing in the x and z directions (for crystals with 
two or three transitions) still remains and reveals itself 
through two families of diffuse streaks in the X-ray 
pattern. 

We have not considered any questions conceming 
lattice dynamics or any problems in the critical 
regions such as critical-exponent calculations. The 
reader may find discussion of such problems in Rytz, 
Hochli & Bilz (1980), Rytz & Scheel (1982), Fontana, 
Kugel & Carabatos (1981), Kleemann, Schafer & 
Fontana (1984), and Kugel, Vogt, Kress & Rytz 
(1984). We believe that our considerations will help 
in the understanding of the nature of the mode 
'softening' and help to answer the question why any 
particular mode in a crystal should be a 'soft' one. 

0.5 

o o'5 L r8 

Fig. 10. Subdivision of shifting region (I) into subregions (1'), (1), 
(2), (3), corresponding to different regimes. Perovskite possesses: 
one transition of  second order, in subregion (1'); one transition 
of first order, in subregion (1); two transitions of first order, in 
subregion (2); three transitions of first order, in subregion (3). 
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Abstract 

This paper is devoted to the calculation of the diffuse- 
scattering picture and its temperature evolution in 
cubic perovskites, the loose packing of which at high 
temperatures is connected with the existence of two- 
dimensional movable objects. The freezing of these 
objects as temperature decreases leads to structural 
phase transitions in consecutive order to 
pseudotetragonal, pseudoorthorhomic and pseudo- 
rhombohedral,  accompanied by the vanishing of 
relrod families of diffuse scattering and by the 
appearence of diffuse (superstructure) reflections. 
Depending upon the values of the ionic radii crystals 
with different numbers of phase transitions are pos- 
sible. The temperature dependence of the order par- 
ameters, lattice constants, superstructure reflections, 
and tilting I, antitilting) angles are calculated and com- 
pared with experimental data. 

Introduction 

The present paper immediately follows parts I, II and 
III (Kassan-Ogly & Naish, 1986a, b, c). 

In II we constructed the diagram (Fig. 8 in II) for 
the existence and stability of A B X 3  compounds based 
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upon the ionic radii, and perovskites were classified 
as loose-packing types (I), (II) and (III). In the 
present paper we shall deal with just the perovskites 
from region (II) of the diagram (tilting). 

In such perovskites unit-cell sizes are determined 
by the contact of B and X ions (Fig. 3 in II). Here 
B ions are immobile, A ions have three degrees of 
freedom, and each X ion has two degrees of freedom 
and, depending on the ionic-radii ratio, is able to 
meet in its motion either an X ion from the neighbour- 
ing cell or A ions from its own cell. This type of loose 
packing determines, as we shall see later on, the 
peculiarities of diffuse scattering in perovskites from 
the tilting region. 

The majority of cubic perovskites are found just in 
this region [see, for example, Alexandrov, An.istratov, 
Besnosikov & Fedoseeva ( 19 81 ) and Fesenko (1972) ]. 
However, X-ray patterns in the mono-Laue method 
have been obtained for only two crystals: KMnF3 
(Comes, Denoyer, Deschamps & Lambert, 1971) and 
NaNbO3 (Denoyer, Comes & Lambert, 1971; Ishida 
& Honjo, 1973). For only one of these (NaNbO3) has 
the temperature evolution (although fragmentary) of 
diffuse scattering been traced, as was done by Comes, 
Lamber & Guinier (1970) for KNbO3 (a crystal of 
shifting type). The appearance of three families of 

© 1986 International Union of Crystallography 


